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Abstrael. A trapezoidal approximation to the Fermi-Dirac distribution function is used 
in order to obtain a simple description of semi-degenerate bound-states of fermions. Our 
model coincides with the exact result up to the first correction in the low-temperature 
expansion while leading to finite equilibrium configurations; thus, it represents an altema- 
tive to the use of confining cells or of energy-or density-cutoffs. The atom and the 
self-gravitating cluster are worked out as explicit examples. 

1. Introduction 

As is well known, if the particles constituting a bound assembly satisfy a perfect-gas 
distribution function at non-zero constant temperature, then the high-energy tail of 
this distribution leads to an inconsistency when defining a finite number of particles 
in the assembly; this, physically, can be traced to the leakage induced by evaporation. 
(Of course, this does not take place when the bound state is spatially confined as, for 
example, in the case of the Wigner-Seitz cell used for atomic systems [ l ]  to describe 
the equation of state (EOS) of matter at finite temperature and pressure.) There are, 
however, other physical entities where the concept of temperature is quite useful hut 
where one would like to get rid of this inconsistency. Examples in this direction are 
some intrinsically-isolated low temperature fermionic clusters such as excited atomic 
nuclei or certain cold astrophysics bodies like white dwarfs or neutron stars. It is worth 
mentioning that the influence of the high energy tail is not just a technical nuisance. 
In the self-gravitating sphere of fermions, for example, the use of the Fermi-Dirac 
distribution function (FDDF) leads, at the periphery, to a density profile which decays 
proportionally to 1 f r’, i.e. to an undesired unlimited value for the radius and total 
mass of this configuration [Z]. For a good reference illustrating this point the reader 
may see [3]. The standard procedure for dealing with this problem consists of using 
a density cutoff in the resulting density profile or an energy cutoff in the energy 
distribution used as input [4,5]. In this paper we present a simple alternative, applicable 
to the description of semi-degenerate bound states of fermions, which consists of 
approximating the FDDF by a trapezoidal model which is conveniently tailored so as 
to coincide with the FDDF up  t o  the first leading correction in the low-temperature 
expansion of the thermodynamic magnitudes. As this model limits the momentum 
spectrum, it allows a consistent treatment of finite bound states; furthermore, its 
functional simplicity leads to a quite transparent description of these systems. We will 
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start the discussion by fixing some points of our statistical-mechanics model and later 
we will analyse two paradigmatic applications. 

Our basic hypothesis consists of replacing the standard FDDF 

W E )  = [ gP( s) + 11-' 

by a trapezoidal approximation, 9( E ) ,  namely 

O S E < p - 1 / 2 p '  

S(E)= f - P ' ( E - F )  p- 1 /2p '<  E S p + 1 / 2 p '  (1) c E > p +  1/28', 

Here /.I stands, just as in P(E), for the chemical potential in the absence of external 
field and p', which is minus the trapezoidal slope, is proportional to the inverse of 
the temperature and will be fixed below. The particle density derived from ( I )  adopts 
the form 

g being the degeneracy parameter and m the individual particle mass. For any T, 3( E )  

leads to the familiar relation PV=fE, and that with the identification p ' =  (257KT)-' 
the expansion of n around its T = 0 value coincides in the two first terms, i.e. those 
in T o  and in T2, with that derived from F(E) .  This will be the value adopted for p' 
throughout the paper, and its use ensures that at low temperature the use of * ( E )  or 
9 ( ~ )  is quantitatively equivalent. 

Another interesting consequence of S ( E )  is that at high T ( - 1 / 2 p ' < p s  1/2p') ,  
the EOS of this system adopts a simple polytropic form, with index equal to $, 

This behaviour, which holds at the periphery of the bound states of particles no matter 
how small KT may be with respect to the Fermi energy ( E ~ )  at the centre, is  ultimately 
responsible for closing the systems and avoiding the above-mentioned inconsistency 
induced by the use of the FDDF. Notice that at the edge of the bound states the effect 
of the trapezoidal truncation is that the classical gas EOS, P Z n T ,  is replaced by 
equation (3). 

Let us now build the structure of the atom and the self-gravitating fermionic sphere 
which derive from W( E ) .  As mentioned, they will be finite, and at the points of effective 
low-temperature (KT<< E ~ ) ,  the resulting density coincides with that which would 
come from FDOF. These two applications will be worked out within a unified formalism: 
the statistical-or Thomas-Fermi (TF)-model. 

2. The atom 

By substituting (2) into Poisson's equation V2@ = 4?ren, assuming g = 2 ,  and with the 
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change of variables: 

with a =ZrrKTbZ-‘e-’,p = O  and C being the generalized chemical potential. Equation 
( 5 )  is, in our formalism, the finite-temperature version of the habitual TF equation in 
atomic physics, and tends to it at zero temperature. The effect of  increasing T is 
included in the dimensionless parameter a; thus, as we see, the universality of TF at 
T=O is only partially lost. We have assumed, as usual, that the nucleus is pointlike, 
thus the right-hand side of Poisson’s equation is valid for all values of r except r =O. 
Therefore we will solve ( 5 )  subject to the basic condition @ ( r ) - + Z e / r  as  r + O ,  i.e. 
x ( x  = 0) = 1. Furthermore, neutral atoms satisfy the restriction X.k(X) = 0, X being 
the atomic radius measured in b units. Thus, as in  the T=O case, the solution 
corresponding to the neutral case is asymptotic to the x axis. One can easily show that 
it fulfils x +  ( ~ ) 2 ‘ 3 a 2 / ’ / x ’ / 3  when x - m .  The total energy of a neutral atom is 

As Ly depafis from 6, ihe physicai so;ui~uns of ( 5 )  &fier from cBse 7-6 isee figure 
1). Table 1 (third column) contains several values of U. For very small a, the equation 

U -  U ( a = O )  
Ze2/ b 

= 1.345a2 (7) 

is a good tit for U and describes the initial increase of energy with temperature in this 
system. 

- 

0 C . U  

--OM 

0 5 IO 15 
X 

Figure.1. Physical d u t i o n s  of ( 5 )  in the atomic case 
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Table 1. Total energy as a function of OL 

0 -0.08409 -0.6806 
0.01 -0.08403 - 0.6 8 0 3 
0.03 -0.08350 -0.6794 

-0.6iSi 0.05 -"."a143 

0.10 -0.07704 - 0.6 7 4 5 

~ " " - . ~  

3. Self-gravitating cluster 

Now we study the structure formed by N non-relativistic fermions o i  mass m, iinked 
together by their own gravity [6 ] .  Inserting (2), with p = m n ,  into the Newtonian 
equation of gravity V2& =4nCp, again with g = 2, and with the change of variables [3] 

.. 

1 GMmX 
)A+,=- 

2P r C = p + m &  

r = b x  b = (g)"' h2 
Gm'N"' 

( R  = bX and M = N m  being the radius of the cluster and total mass respectively), we 
again obtain equation (5) but with p = 1. In this case a =ZnKmG- 'm- 'N- ' .  Thus, 
apart from the minus sign induced by p which reflects the attraction between the 
particles, the parallelism with the atomic case is absolute. Note that in these new 
dimensionless variables N, the number of particles of the cluster, appears [7] at the 
same position as Z, i.e. the nuclear charge of the atom. Here, for any a, the physical 
solutions depart from zero, x(x = 0) = 0, and self-consistency in the total mass imposes 
the restriction X . i ( X ) = - l .  Various physical solutions of (5) are plotted in figure 2. 

I I I I I I I 

0 5 
X 

Figure 2. Physical solutions of (5) in the case of self-gravirating clusters 
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The total energy of the cluster is 

Table 1 (second column) shows several values of U. In the same spirit of (71, here 

Since at T = 0 the structure of the self-gravitating cluster of fermions is that of a 

structure of these configurations evolves from the approximate n = f  polytropic nature 
in the interior (where K T K  E ~ ) ,  to the above-mentioned n = I  behaviour at the edge. 
This contrast with the result obtained when the FDDF is used. In this case one starts 
from n =; at the centre and ends with n =CO (the classical perfect gas) at the border. 
Thus, we see how the trapezoidal approximation induces an effective cutoff in the 

the excitation energy measured in G M 2 / b  units adopts the form 0.651~~. 

nilre nnlvtmne Ihl W P  n h c e n r e  eh.+ in niir f r s m a r x m r l r  n t  1 n . x r ~ t n m n e m t n i r e  the ~ - . -  ' -.,..-. r- L1,, ..- ..."I 111 "". .." ....,, -._, ~~ .V..-~~."~-."-.- ... 1 

pnlytmpic index of the resu!ting r!TQCfurP of the c!uster. 

4. Conclusions 

In our opinion, the method presented here constitutes an elegant alternative for the 
description of finite bound-states of fermions at low temperatures. The trapezoidal 
approximation to the FDDF is extremely simple and provides a natural cutoff for the 
individual particle energy which makes it unnecessary to use the habitual more-or-less 
justified cutoffs. In our model, for the atom and for the self-gravitating cluster, the 
departure from the T = 0 case is controlled solely by a dimensionless parameter U, 
which is proportional to the ratio between the thermal energy and the TF ground-state 
energy. In subsequent work we will develop the applications outlined here. In the field 
of atomic physics, for example, one of the appealing areas for testing this method is 
the physics of small metal clusters [8] because they are produced isolated and at 
non-zero temperature. It is appropriate to remark that here the trapezoidal approxima- 
tion has been plugged into the TF model [9]; analogously it may be used in the 
Hartree-Fock [ 101 or Kohn-Sham formalisms, to describe finite-temperature systems 
from a microscopic point of view [ 111. 
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